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• A method of identifying the current (diagnostic) or future (predictive) 
phenotype induced by a compound based on multivariate data (i.e. genes)

• In vivo: compound-dose properties (dose matters)

• In vitro: compound properties (hazard identification)

• Typically a multivariate classification model, but may also be a profile

What is a Signature?
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Diagnostic Signatures – Correlates with 
Injury, but May Have Some Predictive 
Utility
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Biomarker coincides with 
injury - may be more 
sensitive than apical 
endpoint and thus predictive 
(i.e. Kim-1)

Signature

Typically trained on late 
timepoint data when 

injury is observed
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Predictive Signatures – Precedes Injury
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Pathological Endpoint

Typically trained on early 
timepoint data before 

injury is observed

Biomarker precedes injury 
and may decrease upon 
presence of injury

Signature
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Predictive Signatures – Precedes and 
Correlates with Injury
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Typically trained on early 
and late timepoint data Biomarker precedes injury 

and is sustained during 
injury, resolves as injury 
resolves

Signature



Signatures: Classifiers and Profiles

Linear Classification Model:

Biomarker:

Non-Linear Classification Model:

Profile (or Pattern):

Y = cX1 + cX2 + cX3 + cX4 + B

Y = cX1
1/2 + X2

3 + (X3• X4) + B

Fold Change

Fold Change
1
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TEST COMPOUND

Unsupervised methods are not designed for 
class identification, but rather class discovery

Why Signatures?

Data Provided by Iconix Biosciences
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Unsupervised Methods do not Classify 
Complex Phenotypes, like Pathology, Very 
Well
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Unsupervised Methods do not Classify 
Complex Phenotypes, like Pathology, Very 
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Unsupervised Methods do not Classify 
Complex Phenotypes, like Pathology, Very 
Well
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Class A treatment 
perturbed
genes

Class B treatment 
perturbed

genes

Class C treatment
perturbed genes

Single predictive 
biomarker that captures all 

possibilities

Traditional Biomarker Discovery Approach



Class A treatment 
perturbed
genes Class B treatment 

perturbed
genes

Class C treatment
perturbed genes

Single biomarker genes do not 
adequately represent the 
heterogeneous etiology of 

pathology

Negative 
treatments

Contemporary Biomarker Discovery Approach



Linear Classification Algorithms

• Log ratios for genes : x1, x2…xn

• Associated weights : a1, a2…an

S = Σaixi - b
S= Scalar Product and b = Bias

Interpretation:
If S>0   = True (in class)
If S<0   = False (not in class)

Weights determine the orientation of the hyperplane,
Bias determines the position along the axis

Algorithm attempts to find a linear separation between two classes in 
multi-dimensional gene space

Gene 1

Gene 3

Gene 2
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Linear Classifiers Use Multiple Genes to 
Account for Heterogeneous Classes

Class 1:   genes a,b,c up
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Xenobiotic Receptor 
Mediated

PPAR Mediated

Toxicity and Regenerative
Proliferation

Hormonal Mediated

Chemicals with Similar Mechanism of Action Have 
Similar Profiles Based on Clustering of Genes

Data Provided by Iconix Biosciences
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Impact (Log10 Ratios x weight)Genes in Linear Classifier for Non-Genotoxic
Hepatocarcinogen



Scatter Plot

% True Negative
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Increased Accuracy of Multi-Gene Models vs
Single Genes for Prediction

Based on independent test against 47 compounds

Tsc-22

10% increase 
in specificity

40% increase 
in sensitivity

Signature

Signature to predict non-genotoxic hepatotumorigens



Anchoring Gene Expression Data to an 
Endpoint of Interest
• Intrinsic Endpoints

• Expression data anchored to phenotype measured in the same sample

In vivo: histopathology, clinical chemistry, organ weight, etc

In vitro: biochemical or structural change, cell size, shape, etc

• Extrinsic Endpoints

• Expression data anchored to phenotype of treatment or compound determined 
elsewhere (i.e. literature)

In vivo: carcinogenicity, pharmacology

In vitro: phospholipidosis, cholestasis, DNA damage



Classification Rules Determine Sensitivity 
and Specificity of Biomarker

Treatments inducing 
“effect A”

greater than x

Treatments not inducing 
“effect A”

less than or equal to y

Positive Class Negative Class

Signature

Treatment induces
“effect A”

greater than x

Treatment does not
induce “effect A”

less than or equal to y

Training Set

Test Result
Interpretation



Scatter Plot
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When Signatures Aren’t What You Think They Are:
Check your Classification Rule



Training set may represent distinct but correlated 
variables that dominate expression changes

a a/b
a a/b a/b

a/b
a a/b a/b

a/b
a/b

a/b

a/b

a

a = Pharmacological effect
(Nuclear receptor agonist)

b = Pathology inducers 
(Liver tumors)

b
b

b

b

When Signatures Aren’t What You Think They Are:
Check your Training Set for Confounding Variables
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When Signatures Aren’t As Good As You Think They 
Are:
Check your Validation Approach



• Concentrate on validation, not discovery

• Don’t ignore confounding variables when interpreting data

• Predictor only as good as the training set from which it was derived 
(Size and diversity matters)

• Like other measured endpoints, predicted effects can be secondary 
in nature or not treatment related

• Classifier is only as accurate, but not more accurate, than the gold 
standard to which it is anchored

• Prediction is harder than originally thought

• Be realistic: “All models are wrong, some are useful” – George Box

Final Thoughts


